Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR
نویسندگان
چکیده
Risk-averse mixed-integer multi-stage stochastic programming forms a class of extremely challenging problems since the problem size grows exponentially with the number of stages, the problem is non-convex due to integrality restrictions and the objective function is a dynamic measure of risk. For this reason, we propose a scenario tree decomposition approach, namely group subproblem approach, to obtain bounds for such problems with an objective of dynamic mean-CVaR risk measure. Our approach does not require any special problem structure such as convexity and linearity, therefore it can be applied to a wide range of problems. We obtain lower bounds by using di erent convolution of mean-CVaR risk measures and di erent scenario partition strategies. The upper bounds are obtained through the use of optimal solutions of group subproblems. Using these lower and upper bounds, we propose an algorithm for risk-averse mixed-integer multi-stage stochastic problems with mean-CVaR risk measures. We test the performance of the proposed algorithm on a multi-stage stochastic lot sizing problem and compare di erent choices of lower bounds and partition strategies. Comparison of the proposed algorithm and the commercial solver revealed that, on the average, the proposed algorithm yields 2.58 times stronger bounds compared to a commercial solver.
منابع مشابه
Risk Averse Optimal Operation of a Virtual Power Plant using two Stage Stochastic Programming
Virtual Power Plant (VPP) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mix...
متن کاملRobust multicriteria risk-averse stochastic programming models
In this paper, we study risk-averse models for multicriteria optimization problems under uncertainty. We use a weighted sum-based scalarization and take a robust approach by considering a set of scalarization vectors to address the ambiguity and inconsistency in the relative weights of each criterion. We model the risk aversion of the decision makers via the concept of multivariate conditional ...
متن کاملTwo-Stage Stochastic Programming Involving CVaR with an Application to Disaster Management
Traditional two-stage stochastic programming is risk-neutral; that is, it considers the expectation as the preference criterion while comparing the random variables (e.g., total cost) to identify the best decisions. However, in the presence of variability risk measures should be incorporated into decision making problems in order to model its effects. In this study, we consider a risk-averse tw...
متن کاملA Complex Design of the Integrated Forward-Reverse Logistics Network under Uncertainty
Design of a logistics network in proper way provides a proper platform for efficient and effective supply chain management. This paper studies a multi-period, multi echelon and multi-product integrated forward-reverse logistics network under uncertainty. First, an efficient complex mixed-integer linear programming (MILP) model by considering some real-world assumptions is developed for the inte...
متن کاملAn Efficient Decomposition Algorithm for Static, Stochastic, Linear and Mixed-Integer Linear Programs with Conditional-Value-at-Risk Constraints
LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 266 شماره
صفحات -
تاریخ انتشار 2018